M21-515 Fundamentals of Genetic Epidemiology
Summer 2018

Revised: 7/13/2018

Course Masters Treva Rice, Ph.D. (treva@wustl.edu)
 Yun Ju Sung, Ph.D. (yunju@wustl.edu)

Lab Instructor Oyomoare Osazuwa-Peters (oosazuwa-peters@wustl.edu)

Grading

Computer Lab Assignments 30%
Daily Quiz 30%
Midterm Exam (covers lectures / homework 1-5) 20%
Final Project 20%
Final Grade (+/– letter grades)

Software

Software packages include:
1. R (http://www.r-project.org/)
2. PEDSTATS, Merlin, QTDT (http://www.sph.umich.edu/csg/abecasis)
3. PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/)

Textbook

Austin, MA. Genetic Epidemiology: Methods & Applications
2013, CABI: Oxfordshire, UK.

Format

2-week INTENSIVE course
Morning lecture: 9:00 am – 12:00 noon
Afternoon computer lab: 1:30 pm – 4:00 pm
10-minute break ~ every hour

1st Homework Assignment
Due first day of class, Textbook (Chapters 1-2)
On-line genetics tutorial, Chapters 3, 4, and 6
(http://anthro.palomar.edu/tutorials/biological.htm)

Prerequisite

1) Knowledge of R programming, either having taken the MSIBS summer R-course or experience in R-programming; 2) experience in Linux/Unix operating system.

The core competency for the Fundamentals of Genetic Epidemiology course (M21-515) is for students to understand basic concepts, methods and analytical approaches in genetic epidemiology.

Learning objectives are to

- Understand familial resemblance, heritability and family study designs
- Appreciate maximum likelihood methods and hypothesis testing
- Be aware of selected molecular and population genetics principles, including Hardy-Weinberg Equilibrium
- Grasp the basic concepts and principles underlying genetic linkage and association
- Be able to perform analysis in heritability, linkage and association using selected software and critically evaluate and interpret the corresponding results
Additional Information

1. Quiz based on lecture/assignment from previous day.
2. No make-up quizzes unless pre-arranged before day of quiz.
3. Homework (reading) due BEFORE day of assignment
4. Computer lab (practicum) due on day following assignment BEFORE lecture.
5. Five points per day deducted for lateness in submitting practicum assignment.
6. Final project consists of oral presentation and one-page written report.

Additional Reading

1. Heritability:

2. Molecular Genetics:

3. Markers:

4. Huntington disease:
Course Syllabus

Morning (Lecture Room)
9 am to 12 noon

<table>
<thead>
<tr>
<th>Day</th>
<th>Lecture</th>
<th>Instructor</th>
<th>Reading Homework</th>
</tr>
</thead>
</table>
| 1 | Overview of Course
Overview of GE
Heritability, Family Designs | Rice | On-line tutorial
Ch 1 – 2
Additional Reading 1 |
| 2 | MLE
Hypothesis testing Molecular Genetics (DNA) | Rice | Ch 3
Additional Reading 2 |
| 3 | Population Genetics
(Mendel, Segregation, HWE) Genetic Markers | Rice | Ch 3
Additional Reading 3 |
| 4 | GxE, Non-Mendelian Genetics
Ethics, Public Health | Rice | Ch 8, 10, 11 |
| 5 | Gene-mapping Example
Introduction to Linkage | Sung | Ch 3, 4
Additional Reading 4 |
| 6 | Model-based Linkage
Model-free Linkage | Sung | Ch 4 |
| 7 | Association Studies | Sung | Ch 5 |
| 8 | Population Stratification | Sung | Ch 6 |
| 9 | Analysis of Rare Variants
Data Resources | Sung | Ch 5, 9 |
| 10 | Final Project Presentation
9:00 - noon and 1:30 - 4 pm (Lecture Room) | | |

Afternoon (Computer Lab)
1:30 pm to 4 pm

<table>
<thead>
<tr>
<th>Computer Lab Practicum</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenotype Data QC, PEDSTATS, R</td>
<td>Osazuwa-Peters</td>
</tr>
<tr>
<td>Heritability using Merlin and QTDT</td>
<td>Osazuwa-Peters</td>
</tr>
<tr>
<td>Heritability using Merlin and QTDT</td>
<td>Osazuwa-Peters</td>
</tr>
<tr>
<td>Review Midterm Exam</td>
<td></td>
</tr>
</tbody>
</table>
| Midterm Exam
1:30 pm – 4 pm (Lecture Room) | |
| Genotype Data QC using PEDSTATS | Osazuwa-Peters |
| Linkage Analysis using Merlin | Osazuwa-Peters |
| GWAS using PLINK (Part 1) | Osazuwa-Peters |
| GWAS using PLINK (Part 2) | Osazuwa-Peters |
| Practice Presentation (Lecture Room) | |

Note that the schedule and topics are subject to change.
Final Project

Each student will choose one topic from the list provided below. After doing research, reading suggested (and additional) papers on the topic, you will give a 10-minutes oral presentation and submit a one-page written report.

You need to give:

- Practice presentation (5 minutes) on July 27, Friday afternoon (1:30 – 4 pm in the lecture room) to show us the rough idea of what you will present the next day. You will have a chance to see how your classmates are doing and will receive some feedback and suggestions from your instructor and TA.
- Final presentation (10 minutes) on July 30, Monday (in the lecture room). You may have questions at the end of your presentation. All three instructors will provide scores on your presentation. Also Karen Schwander has kindly agreed to listen to your presentation and give a score.
- One-page written report (by midnight on July 30, Monday). I will be responsible for grading your written report.

As we want each topic to be covered by only one student, no two students should choose the same topic. Choose the topic that you want to present at your earliest convenience before others choose.

Here are some guidelines for choosing a topic and preparing a presentation:

- The order of presentation will follow the order of topics that I have created.
- Some topics will be covered during my lecture. You need to present new information, rather than repeating what you have learned from my lecture.
- We expect that:
 - Your voice should be loud and clear.
 - Your presentation should be well organized. A 10-minute presentation is very short compared to the many hours you spend researching the topic.
 - You only include the materials that you understand or consider important.
 - Your slides should not be too pretty (Please use simple style to avoid distractions!)

Please educate your classmates and instructors. We have a high expectation and confidence that you will do well!

1. Statistical Methodologies for GWAS Era

1a. Genotype Imputation

1b. Principal Component Analysis in Human Genetics

1c. Meta-analysis

1d. Mendelian Randomization

1e. LD Score Regression
• https://github.com/bulik/ldsc

1f. Machine Learning in Genetics
• Machine learning applications in genetics and genomics: http://www.nature.com/nrg/journal/v16/n6/abs/nrg3920.html
• From Statistical Genetics to Predictive Models in Personalized Medicine: http://videolectures.net/nipsworkshops2011_personalized_medicine/
• Regularized Machine Learning in the Genetic Prediction of Complex Traits: http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004754
2. Beyond GWAS

2a. Missing Heritability

2b. 1000 Genomes Project

- http://www.1000genomes.org/

2c. Rare Variants

2d. Epistasis

2e. Pleiotropy

2f. Phenome-Wide Association Studies (PheWAS)

2g. Pharmacogenomics
• https://www.genome.gov/27530645/faq-about-pharmacogenomics/
• Pharmacogenomics and Personalized Medicine https://www.nature.com/scitable/topicpage/pharmacogenomics-and-personalized-medicine-643
• https://www.nature.com/subjects/pharmacogenomics

2h. Epigenetics

3. From Association to Function

3a. From Association to Function

3b. ENCODE Project
• https://www.encodeproject.org/
• http://www.nature.com/encode/#/threads
3c. UCSC Genome Browser
 • http://genome.ucsc.edu/

3d. HaploReg
 • http://archive.broadinstitute.org/mammals/haploreg/haploreg.php

3e. Cancer Genomics
 • http://cancer.genomics.nih.gov
 • White BS, DiPersio JF. Genomic tools in acute myeloid leukemia: From the bench to the bedside. Cancer 120: 1134-44 (2014)

4 Biobanks and Diversity

4a. Diversity
 • Non-European populations still underrepresented in genomic testing samples. American Journal of Medical Genetics Part A. 173(2):296-297

4b. eMERGE network

4c. UK Biobank

- http://www.ukbiobank.ac.uk/

5. Genetics Software/Programs

5a. ABEL Suite

- http://www.genabel.org/

5b. EasyQC

5c. METAL

- http://genome.sph.umich.edu/wiki/METAL_Documentation

5d. RAREMETAL

- http://genome.sph.umich.edu/wiki/RAREMETAL_Documentation

5e. FunciSNP

5f. GCTA-a tool for genome-wide complex trait analysis